Science & Nature

Ensuring That NASA’s DART Kinetic Impactor Asteroid Deflector Hits Its Target

Ensuring That NASA’s DART Kinetic Impactor Asteroid Deflector Hits Its Target thumbnail

Although the chance of an asteroid impacting Earth is small, even a relatively small asteroid of about 500 feet (about 150 meters) across carries enough energy to cause widespread damage around the impact site. launched Wednesday, November 24 at 1: 21 a.m. EST on a

READ:  NASA's James Web Space Telescope sends back clearest images to date

Double Asteroid Redirection Test (DART) Illustration

Illustration of the DART spacecraft. Credit: NASA

Scientists and engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are checking the flight path of the mission and running computer simulations that predict how the impact might change Dimorphos’ orbit. The team will also make telescopic observations to determine the amount and composition of dust and volatiles (easily vaporized material) released during the impact.

“We are an independent check on the mission’s trajectory calculations,” said Brent Barbee, dynamics verification and validation lead and DART flight dynamics support lead at Goddard. Goddard used its in-house-developed Evolutionary Mission Trajectory Generator (EMTG) to provide independent verification and validation of the DART mission trajectories at various stages of the mission’s development and evaluate the ability of the mission to adapt to missed thrust and other contingencies.

“We also used the EMTG to support independent trajectory optimization studies for DART. These studies assessed the best flight paths for the spacecraft given its goals, capabilities, and limitations,” said Bruno Sarli of Goddard and Heliospace Corporation, Berkeley, California, a member of the DART trajectory optimization team.

Goddard scientists are also helping to calculate how the impact will change the orbit of Dimorphos, using a specialized binary (double) asteroid dynamics simulation code developed by the mission’s investigation team to model the orbital and rotational motion of the Didymos system. The Goddard group curated a version of the tool for the DART mission, adding features and functionality. “Our simulation results shed light on how DART’s impact will change the dynamics of the system in ways that are detectable via remote observations,” said Barbee.

“Prior to launch, these simulations helped verify that the DART impact would meet mission requirements even in impact circumstances that are not ideal,” adds Joshua Lyzhoft of Goddard, who performs dynamics simulation development, modeling, and analysis for DART. “We will also be updating the simulations during the mission using observations to help ascertain how much DART’s impact changed the momentum of Dimorphos, which is an important goal of the mission.”

The double asteroid dynamics algorithms and code are very complex and computationally intensive, according to the team. “One of the important features Goddard added to the code is the ability to execute it using parallel distributed computing so that the simulations complete in reasonable amounts of time,” said Barbee. “When the system is observed post-impact that will be the first time such impact effects are observed and the first time such observations will be compared to and used to calibrate dynamics simulations for a double asteroid.”

READ:  Aggressor Adventures Announces New Red Sea RE Aggressor Liveaboard

The spacecraft will intercept Didymos’ moonlet in late September 2022, when the Didymos system is within about 6.8 million miles (11 million kilometers) of Earth, enabling observations by ground-based telescopes and planetary radar to measure the change in momentum imparted to the moonlet.

Goddard scientists will be performing additional observations to add to the mission’s scientific return. “We’ll determine the amount of dust released during impact, as well as the amount and nature of any potential volatiles, through high-resolution radio-telescope observations with the Atacama Large Millimeter Array (

More about the mission and partners:

The binary asteroid simulation dynamics code was developed jointly by DART’s Dynamics Working Group, which is led by Prof. Derek Richardson of the University of Maryland, College Park. The core code was originally developed by Alex B. Davis and Daniel J. Scheeres at the University of Colorado, Boulder, who are also members of the Dynamics Working Group. DART’s Observations Working Group is chaired by Prof. Cristina Thomas of Northern Arizona University.

Johns Hopkins APL manages the DART mission for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office. NASA provides support for the mission from several centers, including the Jet Propulsion Laboratory in Southern California, Goddard Space Flight Center in Greenbelt, Maryland, Johnson Space Center in Houston, Glenn Research Center in Cleveland, and Langley Research Center in Hampton, Virginia. The launch is managed by NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida. SpaceX is the launch services provider for the DART mission. 

Read More

Learn More: science clipart,science memes,q sciences,science diet puppy food,science background,science gif,science is real,science 37,science logo,science wallpaper,science symbols,science gifts,science pick up lines,science jobs near me,science center of iowa,pescience protein,science beaker,science park high school,science bowl,science spot,science immunology,science hill ky,science synonym,science emoji,science valentines,science t shirts,science spectrum,science riddles,science notebook,science history institute,science kits for teens,science skills center high school,pescience high volume,science 37 careers,science kits for adults,q sciences login,science in german,usciences basketball,pescience pre workout,science 360,in science an educated guess is a,science uil,kscience photolab,science under evaluation