Science & Nature

Synthetic memory circuits for stable cell reprogramming in plants

Synthetic memory circuits for stable cell reprogramming in plants thumbnail

References

  1. Thompson, A. J. et al. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 23, 363–374 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  2. Iuchi, S. et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27, 325–333 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  3. Feeney, M., Frigerio, L., Cui, Y. & Menassa, R. Following vegetative to embryonic cellular changes in leaves of Arabidopsis overexpressing LEAFY COTYLEDON2. Plant Physiol. 162, 1881–1896 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  4. Vanhercke, T. et al. Step changes in leaf oil accumulation via iterative metabolic engineering. Metab. Eng. 39, 237–246 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  5. He, R. et al. Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine increases drought tolerance and results in pleiotropic effects. Front. Plant Sci. 9, 970 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  6. Brophy, J. A. N. Toward synthetic plant development. Plant Physiol. 188, 738–748 (2021).

  7. Brophy, J. A. N., Magallon, Ok. J., Kniazev, Ok. & Dinneny, J. R. Synthetic genetic circuits enable reprogramming of plant roots. Preprint at https://www.biorxiv.org/content/10.1101/2022.02.02.478917v1 (2022).

  8. Pires, N. D. et al. Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc. Natl Acad. Sci. USA 110, 9571–9576 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  9. Madrid, E., Chandler, J. W. & Coupland, G. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. J. Exp. Bot. 72, 4–14 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  10. Setty, Y., Mayo, A. E., Surette, M. G. & Alon, U. Detailed map of a cis-regulatory input function. Proc. Natl Acad. Sci. USA 100, 7702–7707 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  11. Krakauer, D. C., Müller, L., Prohaska, S. J. & Stadler, P. F. Design specifications for cellular regulation. Theory Biosci. 135, 231–240 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  12. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  13. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  14. Lohmueller, J. J., Armel, T. Z. & Silver, P. A. A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Nucleic Acids Res. 40, 5180–5187 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  15. Nevozhay, D., Zal, T. & Balázsi, G. Transferring a synthetic gene circuit from yeast to mammalian cells. Nat. Commun. 4, 1451 (2013).

    PubMed 

    Google Scholar
     

  16. Siuti, P., Yazbek, J. & Lu, T. Ok. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 31, 448–452 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  17. Gaber, R. et al. Designable DNA-binding domains enable construction of logic circuits in mammalian cells. Nat. Chem. Biol. 10, 203–208 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  18. Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. & Lu, T. Ok. Synthetic recombinase-based state machines in living cells. Science 353, aad8559 (2016).

    PubMed 

    Google Scholar
     

  19. Weinberg, B. H. et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35, 453–462 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  20. Müller, M. et al. Designed cell consortia as fragrance-programmable analog-to-digital converters. Nat. Chem. Biol. 13, 309–316 (2017).

    PubMed 

    Google Scholar
     

  21. Guiziou, S., Mayonove, P. & Bonnet, J. Hierarchical composition of reliable recombinase logic devices. Nat. Commun. 10, 456 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  22. Zúñiga, A. et al. Rational programming of history-dependent logic in cellular populations. Nat. Commun. 11, 4758 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  23. Bowyer, J. E., Ding, C., Weinberg, B. H., Wong, W. W. & Bates, D. G. A mechanistic model of the BLADE platform predicts performance characteristics of 256 different synthetic DNA recombination circuits. PLoS Comput. Biol. 16, e1007849 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  24. Schreiber, T., Prange, A. & Tissier, A. F. Split-TALE—a TALE-based two-component system for synthetic biology applications in planta. Plant Physiol. 179, 1001–1012 (2019).

  25. Bernabé-Orts, J. M. et al. A memory switch for plant synthetic biology based on the phage ϕC31 integration system. Nucleic Acids Res. 48, 3379–3394 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  26. Lloyd, J. P. B. & Lister, R. Epigenome plasticity in plants. Nat. Rev. Genet. 23, 55–68 (2022).

  27. Jones, J. M. & Gellert, M. The taming of a transposon: V(D)J recombination and the immune system. Immunol. Rev. 200, 233–248 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  28. Takahashi, Ok. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  29. Engler, C. et al. A golden gate modular cloning toolbox for plants. ACS Synth. Biol. 3, 839–843 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  30. Diamos, A. G. & Mason, H. S. Chimeric 3′ flanking regions strongly enhance gene expression in plants. Plant Biotechnol. J. 16, 1971–1982 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  31. Andreou, A. I., Nirkko, J., Ochoa-Villarreal, M. & Nakayama, N. Mobius Assembly for Plant Systems highlights promoter–terminator interaction in gene regulation. Preprint at https://www.biorxiv.org/content/10.1101/2021.03.31.437819v1 (2021).

  32. Efroni, I. et al. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165, 1721–1733 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  33. Wu, F.-H. et al. Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  34. Schaumberg, Ok. A. et al. Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nat. Methods 13, 94–100 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  35. Padidam, M. & Cao, Y. Elimination of transcriptional interference between tandem genes in plant cells. Biotechniques 31, 328–330, 332–334 (2001).


    Google Scholar
     

  36. Nagaya, S., Kawamura, Ok., Shinmyo, A. & Kato, Ok. The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol. 51, 328–332 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  37. Rayson, S. et al. A role for nonsense-mediated mRNA decay in plants: pathogen responses are induced in Arabidopsis thaliana NMD mutants. PLoS ONE 7, e31917 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  38. Lloyd, J. P. B. & Davies, B. SMG1 is an ancient nonsense-mediated mRNA decay effector. Plant J. 76, 800–810 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  39. Causier, B., Hopes, T., McKay, M., Paling, Z. & Davies, B. Plants utilise ancient conserved peptide upstream open reading frames in stress-responsive translational regulation. Plant Cell Environ. 45, 1229–1241 (2022).

  40. Sanfaçon, H. & Hohn, T. Proximity to the promoter inhibits recognition of cauliflower mosaic virus polyadenylation signal. Nature 346, 81–84 (1990).

    PubMed 

    Google Scholar
     

  41. Han, Y.-J., Kim, Y.-M., Hwang, O.-J. & Kim, J.-I. Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation. Plant Cell Rep. 34, 265–275 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  42. Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6, e16765 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  43. Cutler, S. R., Ehrhardt, D. W., Griffitts, J. S. & Somerville, C. R. Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl Acad. Sci. USA 97, 3718–3723 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  44. Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18, 1964–1969 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  45. Vergunst, A. C., Jansen, L. E. & Hooykaas, P. J. Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res. 26, 2729–2734 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  46. Vergunst, A. C. & Hooykaas, P. J. Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol. Biol. 38, 393–406 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  47. Sieburth, L. E., Drews, G. N. & Meyerowitz, E. M. Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis. Development 125, 4303–4312 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  48. Marquès-Bueno, M. D. M. et al. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J. 85, 320–333 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  49. Craft, J. et al. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 41, 899–918 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  50. Weinberg, B. H. et al. High-performance chemical- and light-inducible recombinases in mammalian cells and mice. Nat. Commun. 10, 4845 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  51. Odell, J., Caimi, P., Sauer, B. & Russell, S. Site-directed recombination in the genome of transgenic tobacco. Mol. Gen. Genet. 223, 369–378 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  52. Russell, S. H., Hoopes, J. L. & Odell, J. T. Directed excision of a transgene from the plant genome. Mol. Gen. Genet. 234, 49–59 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  53. Schürholz, A.-Ok. et al. A comprehensive toolkit for inducible, cell type-specific gene expression in Arabidopsis. Plant Physiol. 178, 40–53 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  54. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  55. Logemann, E., Birkenbihl, R. P., Ülker, B. & Somssich, I. E. An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods 2, 16 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  56. Shimada, T. L., Shimada, T. & Hara-Nishimura, I. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 61, 519–528 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  57. Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden Gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4, e5553 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  58. Patron, N. J. et al. Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytol. 208, 13–19 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  59. Libiakova, G., Jørgensen, B., Palmgren, G., Ulvskov, P. & Johansen, E. Efficacy of an intron-containing kanamycin resistance gene as a selectable marker in plant transformation. Plant Cell Rep. 20, 610–615 (2001).

    CAS 

    Google Scholar
     

  60. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, Ok. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  61. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  62. Naseer, S. et al. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc. Natl Acad. Sci. USA 109, 10101–10106 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  63. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  64. Lloyd, J. P. B. et al. Synthetic memory circuits for programmable cell reconfiguration in plants. https://doi.org/10.5281/zenodo.6381286 (2022).

READ:  Wix V/s. WordPress: Which is Better?

Download references

Read More

Learn More: science clipart,science memes,q sciences,science diet puppy food,science background,science gif,science is real,science 37,science logo,science wallpaper,science symbols,science gifts,science pick up lines,science jobs near me,science center of iowa,pescience protein,science beaker,science park high school,science bowl,science spot,science immunology,science hill ky,science synonym,science emoji,science valentines,science t shirts,science spectrum,science riddles,science notebook,science history institute,science kits for teens,science skills center high school,pescience high volume,science 37 careers,science kits for adults,q sciences login,science in german,usciences basketball,pescience pre workout,science 360,in science an educated guess is a,science uil,kscience photolab,science under evaluation

Leave a Reply

Your email address will not be published. Required fields are marked *